Sehingga jarak dari titik E k bidang ASR adalah a/3 satuan. Misalkan, kubus memiliki panjang 12 cm,maka jarak titik E ke bidang ASR adalah 4 cm. Artinya, Kita telah menyelesaikan persoalan ini. Semoga bermanfaat, dan jangan lupa untuk subscribe.
Jaraktitik E ke bidang BDG adalah A. 1 / 3 β3 cm B. 2 / 3 β3 cm C. 4 / 3 β3 cm D. 8 / 3 β3 cm E. 16 / 3 β3 cm (UN Matematika 2012) Pembahasan Perhatikan gambar berikut. Posisi titik E dan bidang BDG Garis merah adalah jarak yang akan dicari, dimana garis tersebut harus tegak lurus dengan bidang BDG. Tambahkan garis-garis bantu
August 16, 2021 Post a Comment Diketahui kubus dengan panjang rusuk 8 cm. Jarak titik E ke bidang BDG adalah .... A. 1/3β3 cm B. 2/3β3 cm C. 4/3β3 cm D. 8/3β3 cm E. 16/3β3 cmPembahasanJarak titik E ke bidang BDG adalah jarak titik E ke bidang BDG adalah 16/3β3 E-Jangan lupa komentar & sarannyaEmail nanangnurulhidayat terus OK! π Post a Comment for "Diketahui kubus dengan panjang rusuk 8 cm. Jarak titik E ke bidang BDG adalah"
Padabidang empat T.ABC, bidang alas ABC merupakan segitiga sama sisi, TA tegak lurus pada bidang alas, panjang TA sama dengan 1 dan besar sudut TBA adalah 30 . Jika Ξ± adalah sudut antara bidang TBC dan bidang alas, maka tentukan nilai tan Ξ± !Kelas 12 SMADimensi TigaJarak Titik ke BidangJarak Titik ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0158Diketahui limas segi empat beraturan TABCD dengan panjang...0400Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0416Diketahui kubus dengan panjang rusuk 4 cm. Jika...0219Diketahui kubus dengan AB=6 cm. Jarak A ke bid...Teks videoInternet seperti ini kita diminta untuk menunjukkan bahwa jarak dari titik e terhadap bidang bdg adalah 2 a per 3 akar 3 cm terjadi jika kita misalkan panjang rusuk kubus ini adalah a cm Enggak jadi di sini jarak dari titik e terhadap bidang bdg bidang bdg adalah yang di sini jarang terlihat seperti segitiga seperti ini enggak jadi di sini jarak dari titik e terhadap bidang bdg adalah garis yang dijadikan titik ini terlihat seperti ini. Jadi dia kita misalkan di tengah Ini adalah titik O jadi jarak dari titik e terhadap bidang bdg adalah garis jika kita perhatikan garis ini adalah dapat disambungkan menjadi garis AC dan garis AC adalah diagonal ruang selalu diagonal ruang untuk diagonal ruang dari kubus diagonal ruang itu sama dengan panjang rusukAtau jika di sini ah, jadi kita bisa langsung saja a dikali dengan akar 3 nanya adalah panjang dari diagonal ruang. Nah jadi di sini juga terdapat ikan garis eo ini adalah garis kece tapi lebih pendek lalu jika kita perhatikan disini garis B dan garis C garis ini panjang dibandingkan dengan garis ko Nah jadi disini kita dapat melihat bahwa garis x garis y = 2 per 3 dari guys sedangkan garis C O karena lebih pendek garis c o u = 1/3 x dengan garis BC Nah jadi dari sini kita mencari garis eo jadi kita tinggal mengalikan 2 per 3 dikali dengan garis AC dan garis HC adalah β 3 Enggak jadi di sini kita memperoleh garis= 2 a per 3 akar 3 cm. Jadi inilah jawaban yang kita peroleh sampai jumpa di soal berikutSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
ABdan HG sejajar. Jarak AB dan HG = AH. Jarak AB dan HG = 8β2 cm. (6) Jarak antara garis dan bidang yang sejajar. Jarak antara garis g dan bidang V yang saling sejajar adalah panjang ruas garis AA 1 , dimana A adalah titik sembarang pada g
Ingat kembali teorema Pythagoras Perhatikan gambar di bawah ini Panjang OR adalah jarak bidang BDG dengan titik E, untuk mempermudah kita tambah garis bantu seperti pada gambar di bawah ini Perhatikan segitiga EPG Panjang-panjang yang diperlukan adalah Perhatikan segitiga PQG. Dengan demikian Jumlah tujuh suku pertama deret geometri tersebut adalah 508 Kemudian pada segitiga EPO berlaku Dengan demikian, jarak titik E ke bidang BGD adalah Jadi, jawaban yang tepat A Top8: Top 10 pada kubus panjang rusuk 6 cm jarak dari titik e Top 9: Top No.1 Sukses Kuasai Matematika SMA Kelas X,XI,XIIο»ΏKelas 12 SMADimensi TigaJarak Titik ke BidangKubus dengan rusuk 4 cm. Jarak titik E ke bidang BDG adalah ... Jarak Titik ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0158Diketahui limas segi empat beraturan TABCD dengan panjang...0400Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0416Diketahui kubus dengan panjang rusuk 4 cm. Jika...0219Diketahui kubus dengan AB=6 cm. Jarak A ke bid...Teks videoHai cover n disini diberikan kubus abcd efgh dengan rusuk 4 cm diminta menentukan jarak titik e ke bidang bdg dimana untuk menentukan jarak titik ke bidang maka kita tentukan proyeksi titik pada bidang tersebut Jarak antara titik ke titik pada bidang adalah Jarak titik ke bidang tersebut untuk menentukan proyeksinya kita tentukan Sebuah bidang yang tegak lurus terhadap bdg dan serta dapatkan sebuah garis yang tegak lurus terhadap PDB dan melalui titik Dalam hal ini maka disini kita tentukan bahwa bidang adgf adalah bidang tegak terhadap bdg karena AC dan BD adalah diagonal dari persegi berarti tentunya adalah saling tegak lurus dan bidang acge membagi bidang bdg menjadi dua bagian yang sama besar sehingga garis potong nya disini adalah oke dan kita dapatkan bahwa acg adalah persegi panjang dengan AC adalah diagonal bidang dan BC adalah panjang rusuknya sehingga kita dapatkan 1 persegi panjang yang istimewa di mana jika kita dapatkan bahwa ukuran dari persegi panjang itu adalah a akar 2 dan a maka dari pertengahan sisi a β 2 kemudian kita tarik ke salah satu ujung pada titik sudut persegi Nya maka diagonal yang memotongnya akan menjadi tegak lurus dalam hal ini og Aceh akan berpotongan saling tegak lurus maka perpotongan antara objek dan disini kita sebut dengan K maka proyeksi titik c pada bidang bdg adalah di k maka jarak titik e ke bdg adalah dimana kita perhatikan bahwa VOC adalah pertengahan dari Aceh sehingga kita dapatkan bahwa c dan K adalah dua segitiga yang sebangun di mana sudut k dengan K disini saling bertolak belakang sudut C dengan sudut adalah dalam berseberangan berarti sama besar sehingga kita dapatkan perbandingan dari Eka dibanding dengan KC adalah Oce dibanding dengan EG berarti OC adalah setengah dari Aceh batik AC dan AG dan EG ini sama sehingga OC adalah 1/2 dari IG dengan demikian kita dapatkan bahwa perbandingan Eka dibanding dengan KC adalah 2 banding 1 dengan demikian kita dapatkan bahwa panjang adalah 2 per 3 dari panjang AC dan BC merupakan diagonal ruang dari kubus dan panjang diagonal ruang kubus ini adalah Misalkan a berarti a β 3, maka Eka disini adalah 2 per 3 dari panjang berarti rusuk akar 3 berarti 4 akar 3 maka kita dapat panjang x adalah 8 per 3 akar 3 cm. Jadi pilihan yang sesuai adalah yang demikian pembahasan kita sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Contoh pada gambar di atas diketahui sebuah titik P terhadap bidang v. Titik P diluar bidang v sehingga memiliki jarak terhadap bidang v sejauh garis tegak (P ke Pβ) dimana Pβ merupakan proyeksi tegak lurus titik p pada bidang v. 3. Kedudukan garis terhadap garis. Dua buah garis dapat dikatakan sebagai berikut :
Sehingga jarak dari titik E k bidang ASR adalah a/3 satuan. Misalkan, kubus memiliki panjang 12 cm,maka jarak titik E ke bidang ASR adalah 4 cm. Artinya, Kita telah menyelesaikan persoalan ini. Semoga bermanfaat, dan jangan lupa untuk subscribe.